Theoretical Studies of the EPR Parameters of Nd³⁺ in LiYF₄

Shao-Yi $Wu^{a,b}$ and Hui-Ning $Dong^{b,c}$

^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China

b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China.

Reprint requests to S.-Y. W.; e-mail: wushaoyi@netease.com

Z. Naturforsch. **59a**, 235 – 238 (2004); received November 6, 2003

The perturbation formulas of the electron paramagnetic resonance (EPR) parameters g_{\parallel} , g_{\perp} , A_{\parallel} and A_{\perp} for a $4f^3(Nd^{3+})$ ion in tetragonal symmetry are established in this work. In these formulas, the contributions to the EPR parameters arising from the second-order perturbation terms and the admixtures of different states are included. Then the above formulas are applied to a tetragonal Nd^{3+} center in LiYF4, where the related crystal-field parameters are calculated from the superposition model and the local structural parameters of the Y^{3+} site occupied by the impurity Nd^{3+} . The EPR parameters and the optical spectra within the $^4I_{9/2}$ and $^4I_{11/2}$ states obtained in this work agree reasonably with the observed values.

Key words: EPR; Crystal-fields and Spin Hamiltonian; Nd³⁺; LiYF₄.